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1 Introduction

Gaussian process classification (GPC) is a promising Bayesian approach to the classification
problem. It is based on defining a so-called latent variable for every pattern, and setting the
prior based on proximity relations among the patterns. Based on the prior and through a se-
ries of integrals, the posterior of a test pattern will determine its classification (see the reviews
of Rasmussen & Williams (2005), Nickisch & Rasmussen (2008), and Seeger (2004)). Unfortu-
nately, this resulting multi-integral formula is intractable, and can only be solved through some
approximations or using lengthy algorithms. In spite of that its superior performance has been
pointed out in several application studies, such as image analysis Batsch et al. (2019), medical
data set classification Jenssen et al. (2007), remote sensing Bazi & Melgani (2010), and active
learning Schreiter et al. (2015) and Elreedy et al. (2019). However, this computational issue
hampers its wide applicability to large data sets. In this paper, we propose a new simplified,
but exact, formula for the binary GPC problem. The proposed method is based on applying
some substitutions and transformations that convert the problem into that of evaluating a ratio
of two orthant integrals of a multivariate Gaussian density. Moreover, we develop a new Monte-
Carlo-type algorithm to evaluate these orthant integrals. The proposed algorithm is based on
some aspects of bootstrap sampling and acceptance-rejection.

The approaches in the literature for the GPC problem can be categorized into solutions based
on analytical approximation of the integrals and solutions based on Monte Carlo sampling (see
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the extensive review of Nickisch & Rasmussen (2008). Among the well-known proposed meth-
ods from the first category are the Laplace’s approximation (Williams & Barber, 1998) and the
expectation propagation (Minka, 2001). Also, some other efficient approximation-based meth-
ods include the work of Csáto et al. (2000), Opper & Winther (2000), Gibbs & Mackay (2000),
Rifkin & Klautau (2004), Jaakkola & Haussler (1999), and Kim & Ghahramani (2006). Work
on the second category, the Monte Carlo approach, has been more scarce. Almost all of the
approaches are based on the Markov Chain Monte Carlo (MCMC) concept. Neal’s so-called
Annealed Importance Sampling (AIS) (Neal, 1998) uses an approximate posterior, rather than
the prior, as a starting point for evaluating the marginal likelihood (to be described shortly).
The Hybrid Monte Carlo (HMC) (Neal (1999) is based on the concept of “importance den-
sity”. Murray et al. (2010) proposed the Elliptical Slice Sampler (ESS). It is based on sampling
over an elliptical slice to efficiently obtain the step size. Titsias et al. (2009) introduced a
novel MCMC approach by making use of a low dimensional vector of control variables (see
also Titsias & Lawrence (2010)). Vehtari et al. (2000) proposed a novel way to choose effective
starting values for the MCMC based on early stopping. Barber & Williams (1997) proposed a
hybrid method, that uses partly an approximation and partly the MCMC procedure.

Nickisch & Rasmussen (2008)) provided a comprehensive review and comparison between
the different GPC approximations and the MCMC approaches. They came to the conclusion
that the MCMC-type approaches are superior in performance, but of course computationally
more extensive. This is because they can obtain the exact solution of the integral formula,
provided the size of the run is large enough. As such, they are not based on approximations, as
in the first category of algorithms.

Kuss & Rasmussen (2005) compared between a number of GPC approximations. Rather
than improving the approximation ability or the computation speed, some researchers considered
short-cuts to the the GPC model itself to achieve better efficiency or performance, such as
sparse GPC models (see Qi et al. (2010), Csáto & Opper (2002) Vanhatalo & Vehtari (2010),
and Titsias (2009)), and low-dimensional manifold embedding (see Urtasun & Darrell (2007)
and Nickisch & Rasmussen (2010)).

A majority of the work in the literature and the above reviewed methods consider the
binary classification case. Nevertheless, some researchers extended The GPC problem to the
multi-class case (for example Girolami & Rogers (2006), Hernández-Lobato et al. (2011) and
Seeger & Jordan (2004)).

The method proposed in this paper fits more into the second category described above (i.e.
exact Monte Carlo-based), but it is not based on the MCMC concept. It is guaranteed to con-
verge as close as possible to the exact solution of the multi-integral formula, provided we use
a large enough sample of generated points. The advantages of the proposed algorithm is that
it does not require any parameter-tuning (other than specifying the number of Monte Carlo
generated points), is consistent, and reliable. (In short it works all the time, we tested hun-
dreds of problems, some as high as 2000 dimensional problems.) It also compares favorably in
terms of speed and accuracy to the other MCMC approaches, especially for the evaluation of
the marginal likelihood. The marginal likelihood is an expression for the likelihood of the data
given the parameters. The hyperparameters are typically tuned by optimizing the marginal
likelihood function. Because of repeated evaluations of the likelihood function, this step is the
most time-consuming part, and the speed-up provided by the proposed algorithm will lead to
a significant computational benefit. A beneficial aspect of the proposed integral formulation is
that it gives many insights into the different influencing factors. For example, one can obtain
the limiting behavior of the covariance matrix parameters, and therefore understand the classi-
fication behavior when moving their values in certain directions. Also, the other advantage of
the integral formulation is that it is given in terms of multivariate Gaussian orthant integrals.
These are well-researched integrals, and several approximations exist in the literature. So, this
could possibly open the way for new competitive approximations to the GPC problem.
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The paper is organized as follows. Next section we present an overview and definition of
the GPC problem. In Section 3 we propose the new formulation that is obtained by simplifying
the multi-integral formula. Section 4 presents an overview of the multivariate Gaussian integral
that has to be evaluated. In Section 5 we propose the new Monte Carlo model for evaluating
the integral. Section 6 provides the experimental study to assess the new model, and Section 7
is the conclusion.

2 The Gaussian Process Classification Problem

Gaussian process classifiers (GPC) are based on defining a “latent state” fi for every training
pattern. It is a central variable in the formulation which measures some sort of degree of
membership to one of the classes. Let yi denote the class membership of training pattern i,
where yi = 1 denotes Class 1 and yi = −1 denotes Class 2. The latent variable fi, whose range
is from −∞ to ∞, is mapped into class posterior probability through a monotone squashing
function σ that has a range of (0, 1), as follows.

J = P (yi = 1|fi) = σ(fi) (1)

There are two typical forms for σ in the GPC literature: the logit (or logistic function) and
the probit (or cumulative Gaussian integral). As argued by Nickisch & Rasmussen (2008), both
choices are effectively quite similar. In this work we consider only the probit function.

In what is next we will follow closely the terminology of Rasmussen & Williams (2005). Let
us arrange the latent variables and the class memberships in one vector each: f = (f1, . . . , fN )T ,
and y = (y1, . . . , yN )T . Note that each index of the afforementioned vectors pertains to a specific
training pattern, and N is the size of the training set. Let xi be the feature vector of training
pattern i. Moreover, let us arrange all training vectors xi as rows in a matrix X. Let x∗ denote
the feature vector of the test pattern, whose class needs to be evaluated. Let its latent state be
f∗.

The latent state vector f obeys an a priori density that is assumed to be a multivariate
Gaussian (therefore the name Gaussian processes). From an a priori point of view, patterns
that are close (in the features space) are more likely to belong to the same class. So this prior
density is selected to reflect that property. Patterns with nearby feature vectors have highly
correlated latent variables fi, and as the patterns become more distant the correlation decays.
The a priori density can be written as

p(f |X) = N (f ; 0,Σ) (2)

where N (f ;µ,Σ) denotes a Gaussian density of variable f having mean vector µ and covariance
matrix Σ. The covariance matrix has elements that are a function of the distance between
two feature vectors ∥xi − xj∥2 and is so designed to achieve this aforementioned correlation
behavior (see Rasmussen & Williams (2005) for a detailed discussion and examples of covariance
functions). A particularly prevalent choice of the covariance matrix is the so called “RBF”
covariance matrix, given by:

Σij = βe
−∥xi−xj∥

2

α2 (3)

The α and β parameters (called respectively the length scale and the latent function scale) are
very influential in the performance of the classifier, and tuning them has to be done with care
(see Sundararajan & Keerthi (2001)). More will be said later on them.

A test pattern’s latent variable f∗ will have similar correlation structure as the training
patterns. Consider the augmented training latent state vector and test point latent state. It is
given as Gaussian, as follows:[

f
f∗

]
∼ N

([
f
f∗

]
; 0,

[
Σ ΣXx∗

ΣT
Xx∗

Σx∗x∗

])
(4)
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where ΣXx∗ is the covariance between the training latent variables and the test latent variable
(it is a vector), and Σx∗x∗ is the variance of f∗. A key to estimating the class membership of
the test point is to evaluate the probability density of its latent state f∗, conditional on all the
information that is available from the training set:

p(f∗|X,y,x∗) =

∫
p(f∗|X,x∗, f)p(f |X,y)df (5)

where p(f |X,y) = p(y|f)p(f |X)
p(y|X) is the posterior of the latent variables. Of course this posterior

density reflects how the prior density is altered to take into account the observed class member-
ships y.

Then, we compute the probability of Class 1 averaged over the conditional density of f∗:

J∗ ≡ p(y∗ = +1|X,y,x∗) =

∫
σ(f∗)p(f∗|X,y,x∗)df∗ (6)

where we used the fact that σ(f∗) signifies the conditional given in Eq. (1). We get

p(f∗|X,y,x∗) =

∫
p(f∗|X,x∗, f)p(y|f)p(f |X)df

p(y|X)
(7)

where

p(y|f) =
N∏
i=1

p(yi|fi) =
N∏
i=1

σ(yifi) =

N∏
i=1

yifi∫
−∞

e−
x2

2

√
2π

dx, (8)

where we used the fact that σ is the probit function (integral of the Gaussian function). Note
that P (yi = −1|fi) = 1 − P (yi = 1|fi) = 1 − σ(fi) = σ(−fi) = σ(yifi) because of the point
symmetry of σ. Also,

p(f∗|X,x∗, f) = N (f∗;a
T f , σ2

∗) (9)

where

a = Σ−1ΣXx∗ (10)

σ2
∗ = Σx∗x∗ − ΣT

Xx∗Σ
−1ΣXx∗ (11)

We utilized formulas expressing the conditional of a multidimensional Gaussian distribution,
applied to Eq. (4).

All past formulas follow from straightforward probability manipulations, and they are de-
scribed clearly in Rasmussen & Williams (2005), p. 16 Eq. 2.19. Equation (6), representing
the posterior probability corresponding to the test pattern x∗, is the main quantity needed to
classify the pattern. Thus, J∗ ≥ 0.5 means that the pattern should be classified as Class 1, and
otherwise it should be classified as Class 2.

Another important quantity that is needed is the so-called marginal likelihood L, defined as

L = p(y|X) (12)

It is an important quantity for the purpose of tuning the two hyperparameters (α and β).
By maximizing the marginal likelihood, we arrive at hyperparameters that are most consistent
with the observed data. As such, any method should also be able to efficiently evaluate the
marginal likelihood. See Rasmussen & Williams (2005) for more information about the marginal
likelihood.
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3 The Proposed Simplification of the Multi-Integral

3.1 Variable Transformation

Evaluating Equations (6), (7) analytically is very hard to accomplish. The difficulty arises
also when attempting to evaluate them numerically because of the high dimensionality of the
integrals (for example for a problem with a training set of size 1000 we are dealing with more than
a thousand-fold integral). Also, attempting a standard Monte Carlo evaluation leads to some
practical problems, among them is the fact that

∏N
i=1 σ(yifi) turns out to be usually a very small

number (with a negative exponent with a very large magnitude). So to summarize, we are dealing
with a very hard problem if an exact solution is to be sought. Here we develop a procedure that
transforms the problem into the more approachable form of integrals of multivariate Gaussian
functions. Specifically, we perform some substitutions and transformations of variables that will
convert the problem into evaluating orthant integrals of some multivariate Gaussian density. By
orthant integral we mean an integral of a zero-mean multivariate Gaussian function over some
quadrant, e.g. over x ≥ 0. The detailed steps are given below.

Substituting (8), (2), (9) and (7) into (6), we obtain:

J∗ =
1

p(y|X)

∞∫
f∗=−∞

[ f∗∫
u=−∞

e−
u2

2

√
2π

du

] ∫
f

[
N∏
i=1

yifi∫
zi=−∞

e−
z2i
2

√
2π

dzi

]

N (f ; 0,Σ) N (f∗;a
T f , σ2

∗)df1df2..dfNdf∗ (13)

Rearranging, we get

J∗ =

∞∫
f∗=−∞

f∗∫
u=−∞

∞∫
f1=−∞

...
∞∫

fN=−∞

y1f1∫
z1=−∞

...
yNfN∫

zN=−∞
e−

W
2 dz1...dzNdf1...dfNdudf∗

(2π)N+1σ∗|Σ|
1
2 p(y|X)

(14)

where

W = u2 +
N∑
i=1

z2i + fTΣ−1f +
(f∗ − aT f)2

σ2
∗

(15)

Rewriting W in matrix form:

W =
[
u z1 · · · zN

]


u
z1
...
zN

+ fTΣ−1f +

[
f∗ f1 · · · fN

]
B


f∗
f1
...
fN


where B = 1

σ2
∗

[
1
−a

] [
1 −aT

]
. The problem with this integral (J∗) is that some of its

variables (f∗, f1, ..., fN ) occur in the limits of the integrals. A transformation can fix this
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problem by using the substitution (see the preliminary work of Abdel-Gawad & Atiya (2008)):

v ≡


v1
v2
...

v2N+2

 =



−1 0 0 1 0 0 0
0 −1 0 0 y1 0 0

0
. . . 0 0 0

. . . 0
0 0 −1 0 0 0 yN
0 0 0 1 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1




u
z
f∗
f

 (16)

We get

J∗ =

∞∫
v1=0

∞∫
v2=0

...
∞∫

vN+1=0

∞∫
vN+2=−∞

...
∞∫

v2N+2=−∞
e−

vTDv
2 dv1 · · · dv2N+2

(2π)N+1σ∗|Σ|
1
2 p(y|X)

(17)

where

D =


1 0 −1 0
0 I 0 −C ′

−1 0 1 + 1
σ2
∗

−aT

σ2
∗

0 −C ′ − a
σ2
∗

I +Σ−1 + aaT

σ2
∗

 (18)

where C ′ =


y1

y2
. . .

yN

 and I is the identity matrix (in both cases in the formula it is

N ×N). The integration can then be put in the form:

J∗ =
1

|D|
1
2 |Σ|

1
2 p(y|X)σ∗

∫
N
(
v; 0, D−1

)
dv (19)

This integral above is called orthant normal integral where the orthant is defined over

 v1
...

vN+1

 ≥

0 and −∞ <

 vN+2
...

v2N+2

 < ∞. Let us denote this orthant by orth. Consider now the term

p(y|X). Integrating (7) w.r.t. f∗ from −∞ to ∞, and using the fact that
∫
p(f∗|X,y, x∗)df∗ = 1

we get

p(y|X) =
∞∫

−∞

∫
f p(f∗|X,x∗, f)p(y|f)p(f |X)df df∗

=
∞∫

−∞

∞∫
−∞

e−
x2

2√
2π

dx
∫
f p(f∗|X,x∗, f)p(y|f)

p(f |X)df df∗

(20)

The integral
∞∫

−∞

e−
x2

2√
2π

dx in the previous equation is inserted on purpose. It equals 1 so it

will not alter the formula. The above integral will be the same as (19) except that the limits
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will be over the orthant defined by

 v2
...

vN+1

 ≥ 0 and −∞ <


v1

vN+2
...

v2N+2

 < ∞. The reason is

that the above analysis that led to (19) will apply here except that one of the integral’s limits
is different (the Gaussian integral with variable x that is inserted in (20), here the upper limit
is ∞ instead of f∗). Let us denote this orthant by orth+. The expression for the posterior will
then be given as.

J∗ = p(y∗ = 1|X,y,x∗) =

∫
orthN

(
v; 0, D−1

)
dv∫

orth+N (v; 0, D−1) dv
=

I1
I2

(21)

3.2 Further Reduction:

The limits for the portion (vN+2, . . . , v2N+2)
T in Expression (21) are from −∞ to ∞, so these

variables can be integrated out. This means that the expression can further be reduced from
a 2N + 2 dimensional integral to an N + 1 dimensional integral. The detailed steps of this
reduction are given below.

Let v =

 v1
...

vN+1

 and v′ =

 vN+2
...

v2N+2

. We can write:

I1 = k3

∫
v≥0

∫
−∞≤v′≤∞

e−
1
2(v

TA11v−2vTA12v′+v′TA22v′)

(2π)
N+1

2 |A22|−
1
2

dv′dv (22)

where the D matrix defined in (18) is written as D =

[
A11 −A12

−A12 A22

]
, A11 = I, A12 =[

1 0
0 C ′

]
, A22 =

[
1 + 1

σ2
∗

−aT

σ2
∗

− a
σ2
∗

I +Σ−1 + aaT

σ2
∗

]
, and k3 = (2π)−

N+1
2 |A22|−

1
2 |D|

1
2 . Some manip-

ulations lead to:

I1 = k3

∫
v≥0

∫
−∞≤v′≤∞

e−
1
2(v

′−A−1
22 A12v)

T
A22(v′−A−1

22 A12v)

(2π)
N+1

2 |A22|−
1
2

dv′

. e−
1
2(v

TA11v−vTA12A
−1
22 A12v)dv

Now the inside integral w.r.t. v′ equals 1. We get

I1 = k3(2π)
N+1

2 |A|−
1
2

∫
v≥0

N
(
v; 0, A−1

)
dv, (23)

where

A = I −A12A
−1
22 A12 (24)

A similar formula applies for I2 but with integration limits given by −∞ < v1 < ∞ and v2
...

vN+1

 ≥ 0
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Some further simplification (see the Appendix for a detailed proof) leads to

A−1 ≡ R =

(
1 + Σx∗x∗ ΣT

Xx∗
C ′

C ′ΣXx∗ C ′(I +Σ)C ′

)
(25)

= I +A12Σ
′A12 (26)

where Σ′ is the composite covariance function (of training patterns plus testing pattern, see Eq.
(4)):

Σ′ =

(
Σx∗x∗ ΣT

Xx∗
ΣXx∗ Σ

)
. (27)

The final classification posterior probability is thus given by

J∗ = p(y∗ = 1|X,y,x∗) =

∫
orthN (v; 0, I +A12Σ

′A12) dv∫
orth+N (v; 0, I +A12Σ′A12) dv

=
I1
I2

(28)

where orth means the integration over v ≥ 0, and orth+ is the integration over the region given

by −∞ < v1 < ∞ and

 v2
...

vN+1

 ≥ 0 As we have demonstrated in Eq. (20), the term p(y|X),

which represents the marginal likelihood as described in Eq. (12) and beyond, is basically I2,
or the denominator of the expression for J∗. Thus,

L = p(y|X) =

∫
orth+

N
(
v; 0, I +A12Σ

′A12

)
dv (29)

=

∫
orth

N
(
v′; 0, C ′(I +Σ′)C ′) dv′ (30)

The last identity is obtained by noting that the limit for v1 in Eq. (29) stretches from −∞ to
∞ and therefore v1 can be integrated out. The vector v′ ≡ (v2, . . . , vN+1)

T corresponds to the
variables of the training set, while v1 corresponds to the test pattern.

3.3 Some Insights

The denominator, as mentioned, represents the marginal likelihood p(y|X). Essentially, the
marginal likelihood, as also observed from the integral, measures how well the class memberships
yi fit with the covariance structure. If the patterns of 1’s and -1’s multiplied with the components
of Σ′ (through A12) (in Eq. (29)) emphasize the large covariance elements (through agreeing
class memberships, i.e. yiyj = 1) and deemphasizing the small covariance elements (through
disagreeing class memberships, i.e. the multiplied by the factor yiyj = −1), then we have a
relatively large marginal likelihood, and therefore a fairly consistent model. The reason why
the positive orthant integral will have higher value for large positive covariances (rather than
negative) is that the largest principal components will then be oriented closer to the orthant.

The classification posterior probability J∗ is the ratio of the integral over an orthant, and
the integral is over orth+ which basically extends over two orthants. This makes the expression
appropriately smaller than 1. Observing the numerator, we find that the predominant signs
(in yi and therefore also A12) that multiply large covariance elements (in ΣXx∗) will determine
if the numerator has a large value (therefore the pattern should be classified as Class 1), or a
small value (therefore the pattern should be classified as Class 2). Note that the identity matrix
component of the covariance matrix in Eqs. (26) and (29) is some kind of regularizing factor
that acts to “fatten” density.

Let us now consider the effects of the hyperparameters. Consider the RBF kernel (Eq.
(3)). The analysis here complements and in many ways confirms the insightful analysis of
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Nickisch & Rasmussen (2008). When either the latent function scale β −→ 0 or the length scale
α −→ 0 then the covariance matrix in the multivariate Gaussian tends to the identity matrix.
In case of identity matrix the orthant integral equals 2−d where d is the dimension. So, we end
up with L = 2−N and J∗ =

1
2 . If β −→ ∞ then the identity matrix part of the covariance matrix

becomes negligible compared to the other part, see Eq. (26), and we get a formula similar to
Eq. (28), but without the identity matrix added in the covariance expression. If α −→ ∞, then
we get the following formula. To avoid distraction to side issues, the proof is not given here.

J∗ =

∫∞
−∞ e−

u2

2 σ
(√

βu
)N1+1

[
1− σ

(√
βu
)]N2

du∫∞
−∞ e−

u2

2 σ
(√

βu
)N1
[
1− σ

(√
βu
)]N2

du

(31)

where σ is the cumulative Gaussian integral (i.e. the integral of the one-dimensional Gaussian
density), and N1 (N2) is the number of Class 1 (Class 2) training patterns. This formula, con-
sisting of elements of cumulative Gaussian integral and the Gaussian function, can be further
simplified using the methodology of Fayed & Atiya (2014b) and Fayed et al. (2015a). Essen-
tially, the formula above gives some kind of a “soft” counting procedure, without regards to the
distances involved. One can see that all test patterns will be classified as only one specific class
(the one that wins the counting game).

4 The Multivariate Gaussian Integral

As can be seen the final equations (28), (29), and (30) for the posterior probability and the
marginal likelihood are given in terms of two multivariate Gaussian integrals. The difficulty
is that these are very high dimensional integrals (the dimension equals the size of the training
set), making that a formidable problem. Consider that we would like to apply the standard
approach of generating many points according to the multivariate density, and then computing
the fraction of points that fall in the considered orthant (area of integration). Such high order
integrals are typically a very small number, for example 10−50 (both integrals I1 and I2 give
such orders of magnitudes, but their ratio is a sensible number). So even if we generate trillions
of points, essentially no point will happen fall in the area of integration.

There is a large literature on the multivariate Gaussian integral. Interest in the problem
started around the forties of last century, and research is continuing since then (see the reviews
of Gupta (1963a) and Gupta (1963b), Johnson et al. (1994), and Genz & Bretz (2009)), as it
is applicable in many problems such as the first passage time problem for stochastic processes
(Atiya & Metwally, 2005). Essentially the state of the art is that a closed form formula exists
only for a dimension up to three for the centered case (i.e. the integrals for the zero mean
case where the limits are from 0, as is our case, see Eriksson (1990)), and no closed form
formulas exist for the non-centered case. There are some special constructions of the covariance
matrices for which simplified formulas exist (for any arbitrary dimension). There has also been
some series expansions for the centered case in terms of the elements of the covariance matrix
(Kendall, 1941; Moran, 1948), in terms of the elements of the inverse of the covariance matrix
(Ribando, 2006), or by using Fourier series expansion Fayed & Atiya (2014a) and Fayed et al.
(2015b). These formulas, while very elegant and insightful, are intractable for dimensions larger
than ten, because of the huge number of combinations of powers of the N2 variables of the
covariance matrix. A parallel track in the attempt to tackle the multivariate Gaussian integral
is by applying some efficient numerical integration techniques (see for example Schervish (1984)).
Due to the exponential nature of these methods, they are applicable for a dimension up to around
20. Another track considers improvised Monte Carlo methods (Deák, 1986; Genz, 1993; Breslaw,
1994) and Hajivassiliou et al. (1991). Again, these methods have not been demonstrated on high
dimensional problems.
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5 New Monte Carlo Method

5.1 The Proposed Method

The proposed new Monte Carlo method tackles the high-dimensional multivariate Gaussian inte-
gral, and thereby simultaneously evaluates the posterior probability and the marginal likelihood.
It combines aspects of rejection sampling and bootstrap sampling. The general idea is to first
generate samples for the first variable v1. Subsequently, we reject the points that fall outside
the integral limits (for v1). Then we replenish in place of the discarded points by sampling
with replacement from the existing points (i.e. the points that have been accepted). Next,
we move on to the second variable, v2, and generate points using the conditional distribution
p(v2|v1). Again, we reject the points of v2 that fall outside the integration limit, and replenish
by sampling with replacement. We continue in this manner until we reach the final variable vN .
The integral value is then estimated as the product of the acceptance ratios of the N variables.
Unlike MCMC-type methods, we do not need to perform additional cycles. We cycle only once
through the N variables, each time generating a number M of points.

Here are the detailed steps of the algorithm:

1. For i = 1 to N perform the following:

2. If i = 1 then generate M points v1(m) from p(v1). Otherwise, generate M points vi(m)
according to the conditional density function:

p ≡ p(vi|v1:i−1(m)) (32)

where v1:i−1(m) is the mth string of points (of variables v1 to vi−1) already generated in
the previous steps.

3. Reject the points vi(m) that are outside the area of integration, i.e. reject the points
vi(m) ≤ 0. Assume that there are M1(i) accepted points and M2(i) ≡ M −M1(i) rejected
point.

4. Replenish in place of the rejected points, by sampling a number M2(i) points by replace-
ment from among the accepted points.

5. Once reaching the last dimension i = N , we stop, computing the multivariate integral as

I =
N∏
i=1

(
M1(i)

M

)
(33)

5.2 The Rationale of the Algorithm

The proof that the proposed algorithm leads to an estimate for the multivariate orthant proba-
bility is essentially by construction, and this is described here. The multivariate integral can be
written as:

I = p(v1 ≥ 0, v2 ≥ 0, . . . , vN ≥ 0) (34)

= p(vN ≥ 0|v1 ≥ 0, . . . , vN−1 ≥ 0) . . . p(v2 ≥ 0|v1 ≥ 0)p(v1 ≥ 0) (35)

Since we generate points according to the distribution in (32), which conditions only on the
surviving points that were not being rejected in previous rounds, the generated points will obey
the distribution p(vi|v1 ≥ 0, . . . , vi−1 ≥ 0). From this distribution M1(i) points (out of M) will
have vi ≥ 0 and will be accepted. As such, the ratio M1(i)/M is an estimate of the probability
p(vi ≥ 0|v1 ≥ 0, . . . , vi−1 ≥ 0). Using Eq.(35) we obtain the product formula (33) for the
overall multivariate integral. Please note that the bootstrap sampling step does not alter the
distribution of the generated points.
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5.3 Example:

Consider for example that we would like to compute

I =

∫ ∞

0.7

∫ ∞

1.4

∫ ∞

1.2
N (µ,Σ)dv1dv2dv3 (36)

1. We generate M points from p(v1) (let M = 10). Let these points be 2.1, 0.2, 0.6, 1.8, 2.2,
0.8, 1.3, -0.3, 1.4, 1.6. We reject the points 0.2, 0.6, 0.8, -0.3, as they are less than 1.2 and
hence are outside the area of integration. We keep the six accepted points 2.1, 1.8, 2.2,
1.3, 1.4, 1.6, and remove the rejected points. In place of the rejected points, we sample a
similar number (i.e. four) from among the accepted points, with replacement. Assume we
have done that and we have obtained: 2.1, 1.3, 1.8, 2.1. So, overall we have the following
points (v1(m)’s): 2.1, 1.8, 2.2, 1.3, 1.4, 1.6, 2.1, 1.3, 1.8, 2.1.

2. Generate M ≡ 10 points from p(v2|v1(m)). Specifically, we generate one point v2(1)
using the density p(v2|v1 = 2.1), then one point v2(2) using the density p(v2|v1 = 1.8),
and so on. (Note that p(v2|v1) is obtained using simple manipulation of the multivariate
Gaussian density and it becomes a univariate Gaussian density.) Let the generated points
be v2(m) = 2.5, 1.5, 2.0, 1.7, 1.1, 1.5, 1.7, 1.3, 1.9, 2.0. We reject the points 1.1 and
1.3 as they are below the integration limit of 1.4. Then we sample two more points by
replacement in place of these rejected points. We continue in this manner for the remaining
dimension. Assume that we rejected three points in this case.

3. The integral estimate is the product of the acceptance ratios, i.e. it equals
(

6
10

)(
8
10

)(
7
10

)
.

5.4 On the Convergence of the Proposed Algorithm

Because the integral is typically a very small number, we will consider here the logarithm of the
integral as the target value we would like to estimate, i.e., from Eq.(35):

log(I) = log
[
p(vN ≥ 0|v1 ≥ 0, . . . , vN−1 ≥ 0)

]
+ · · ·+ log

[
p(v2 ≥ 0|v1 ≥ 0)

]
+ log

[
p(v1 ≥ 0)

]
(37)

Assume for the time being that the values generated are independent. In every step of the
algorithm we generate M Bernoulli trials, where each has a probability of Pi ≡ p(vi ≥ 0|v1 ≥
0, . . . , vi−1 ≥ 0) in landing in the integral’s sought interval and being accepted for the subsequent
steps. Let us analyze the bias and the variance.

E

[
log

(
Mi

M

)]
≈ log

(
Pi

)
+

1

Pi
E

[
Mi

M
− Pi

]
−

E

[
Mi
M − Pi

]2
2P 2

i

(38)

where the expression in the RHS originates from a Taylor series expansion of log(Mi/M) around
the value log(Pi), and keeping up to quadratic terms. The expectation in the second term in
the RHS equals zero (because it is a binomial process, so the expectation of Mi equals MPi).
The last term in the RHS can also be evaluated, and we obtain the bias as

Bias ≡ E

[
log

(
Mi

M

)]
− log

(
Pi

)
= −(1− Pi)

2MPi
+O(M−2) (39)

= O(M−1) (40)

which means that we can have the bias as close as possible to zero, as the number of generated
points becomes very large.
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Concerning the variance, we get

Var

[
log

(
Mi

M

)]
=

1− Pi

MPi
+O(M−2) = O(M−1) (41)

For the overall integral, we get

log(I) =

N∑
i=1

log(Pi) (42)

with the bias and variance becoming

Bias(Î) = − 1

M

[
N∑
i=1

(1− Pi)

2Pi

]
+O(M−2) (43)

Var(Î) =
1

M

[
N∑
i=1

(1− Pi)

Pi

]
+O(M−2) (44)

Thus, the mean square error (MSE) goes to zero as M −→ ∞. Note that Pi is the outcome of
a one-dimensional integral, so it is expected to be in the middle range of (0, 1).

As a benchmark comparison, consider the basic Monte Carlo integration algorithm, where
we generate a number of points according to the multivariate Gaussian distribution and evaluate
the fraction of points falling in the area of integration. In that case the mean square error is
(1− I)/(MI)+O(M−2), where I is the value of the multivariate integral. One can see that the
MSE is very large because typically I is infinitessimally small.

When we derived the above formula, we assumed that the samples are independent, as an
approximation. Strictly speaking they are not, because of the following reason. Consider two
points vj(1) and vj(2) generated according to p(vj |v1 ≥ 0, . . . , vj−1 ≥ 0). Tracking backwards
from their values at dimension j and going upstream through the conditioned variables, we could
find one variable, say vj−k, that is a common conditioned variable to the two generated points
vj(1) and vj(2) (i.e. a common ancestor). This is because of the bootstrap sampling procedure.
However, we argue that the dependence will be fairly small. This is because equally-valued
samples will get completely dispersed when we generate samples for the next variable, and so
the dependence will decay fast. So, the net effect of this dependence is to have a somewhat
higher MSE, but it would still be the same order, i.e. O(M−1), and with higher coefficient. (It
is akin to estimating the mean of a variable using generated points having a banded covariance
matrix, the MSE will still be O(M−1).)

5.5 On Generating from the Distribution p(vi|v1:i−1(m))

In Step 2 in the algorithm described in Subsection 5.1, we need to generate from the condi-
tional Gaussian distribution. This can be accomplished using the well known identity (assume
mean(v)=0):

p(vi|v1:i−1) = N
(
vi,b

T
i v1:i−1, σ

2
i

)
(45)

where
bi = R−1

1:i−1,1:i−1R1:i−1,i (46)

σ2
i = Ri,i −Ri,1:i−1R

−1
1:i−1,1:i−1R1:i−1,i (47)

and where R ≡ I + A12Σ
′A12 is the covariance matrix pertaining to the multivariate Gaussian

(see Eqs. (25) and (28)), and the notation Ai:j,k:l means the submatrix constructed from A by
taking rows i to j and columns k to l.
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We have to compute these variables in Eqs. (46) and (47), including inverting a matrix
every step, i.e. N times. We present here a computationally more efficient algorithm based on a
recursive computation of the quantities in Eqs. (46) and (47). Assume that we have performed
the computations at Step i, i.e. that bi, σ

2
i and Qi ≡ R−1

1:i−1,1:i−1 are available. Proceeding to the
next step i+ 1, we first tackle Qi+1. Using the partitioned matrix inversion (Horn & Johnson,
1985), we get

Qi+1 =

(
R1:i−1,1:i−1 R1:i−1,i

RT
1:i−1,i Rii

)−1

=

(
R−1

1:i−1,1:i−1 +
1
kR

−1
1:i−1,1:i−1R1:i−1,iR

T
1:i−1,iR

−1
1:i−1,1:i−1 − 1

kR
−1
1:i−1,1:i−1R1:i−1,i

− 1
kR

T
1:i−1,iR

−1
1:i−1,1:i−1

1
k

) (48)

where k = Rii −RT
1:i−1,iR

−1
1:i−1,1:i−1R1:i−1,i. Notice that k equals σ2

i , which is available from the
previous step. This way of updating the inverse of the covariance matrix has been commonly
used in the signal processing community, and it was even introduced in Gaussian process re-
gression by Csáto & Opper (2002), Van Vaerenbergh et al. (2012), and Pérez-Cruz et al. (2013).
Substituting from Eq. (46), we get

Qi+1 =

 Qi +
bib

T
i

σ2
i

− bi
σ2
i

−bTi
σ2
i

1
σ2
i

 (49)

We also get
bi+1 = Qi+1R1:i,i+1 (50)

σ2
i+1 = Ri+1,i+1 −RT

1:i,i+1bi+1 (51)

In summary, using these recursive formulas we can compute the moments for the conditional
distribution using O(N2) instead of O(N3) operations, thus providing some computational sav-
ings.

5.6 Summary of the Algorithm

The algorithm turns out to be very simple, and can be coded easily. It is important to start
with the training set, then proceed with the test set. So, basically we will rename the variables,
such that v1:N represents the training set, and vN+1:N+NTEST represents the test set. Also, for
convenience, the covariance matrix of (25) will be rearranged and will be made to include all
test patterns, to become

R =

(
C ′(I +Σ)C ′ ΣT

X∗X∗
C ′

C ′ΣX∗X∗ I +ΣX∗X∗

)
(52)

where X∗ is the matrix of test patterns. As can be seen in the algorithm, the training set
computations have to be done once, and need not be repeated for every test pattern, making
the algorithm of incremental nature. The algorithm is described follows:

Algorithm GPC-MC

1. i = 1: Set Q2 = 1
R1,1

, σ2
1 = R1,1. Generate M points v1(m) according to N (v1, 0, σ

2
1).

Compute

P̂1 =
#
(
v1(m) s. t. v1(m) ≥ 0

)
M

(53)

where the latter expression means the fraction of points that are ≥ 0. Remove the points
v1(m) < 0. Sample by replacement from among the remaining points to keep the total
number of points equal M . Rename the variables, so that v1(m) are the new kept points.
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2. For i = 2 to N do the following:

(a) Compute the matrices:

bi = QiR1:i−1,i (54)

σ2
i = Ri,i −RT

1:i−1,ibi (55)

Qi+1 =

 Qi +
bib

T
i

σ2
i

− bi
σ2
i

−bTi
σ2
i

1
σ2
i

 (56)

(b) Generate M points vi(m) according to N (vi,b
T
i v1:i−1(m), σ2

i ), m = 1, . . . ,M . Com-
pute

P̂i =
#
(
vi(m) s. t. vi(m) ≥ 0

)
M

(57)

(c) Remove the points vi(m) < 0. In their place, sample by replacement from among the
remaining points to keep the total number of points equal M . Rename the variables,
so that vi(m) are the new kept points.

3. The log marginal likelihood function is given by the following sum over the training set
probabilities:

LogL =

N∑
i=1

log
(
P̂i

)
(58)

4. For i = N + 1 to N +NTEST (the test patterns) do the following:

(a) Compute the matrices:

bi = QN+1R1:N,i (59)

where QN+1 represents the covariance matrix inverse, obtained at the last training
pattern. It will not be be updated further during the test.

σ2
i = Ri,i −RT

1:N,ibi (60)

(b) Generate M points vi(m) according to N (vi,b
T
i v1:N (m), σ2

i ), m = 1, . . . ,M . Com-
pute

P̂i =
#
(
vi(m) s. t. vi(m) ≥ 0

)
M

(61)

Note that P̂i is the sought test pattern posterior probability. Note also that we do not
need to perform the bootstrap sampling step here for the test.

Note that the proposed algorithm, after it is applied to the training set, has its samples obey
the posterior distribution. So these samples can be saved for any future evaluation of a test
pattern.
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5.7 Another Variant

A possibly more efficient modification is to have some kind of soft count, instead of the hard
count used in Eq.(57) (or Eq. (33) ). We know that each point, while moving from Step i − 1
to Step i, is generated from a Gaussian density. The probability of landing in the positive side
can be computed by simply applying the cumulative Gaussian integral for each point (i. e.

σ(u) ≡
∫ u
−∞

e−
x2

2√
2π

dx). In that case, instead of Eq. (57) we apply the following:

P̂i =

∑M
m=1 σ

(
bT
i v1:i−1(m)

σi

)
M

(62)

This applies similarly to Eq. (61). Of course, this does not relieve us from having to generate
the points. We have to do that while moving forward till reaching the last dimension. In essence,
all other steps are similar to the original version of the algorithm. Only the count is different.

6 Simulation Experiments

6.1 Experiment 1: Testing the New Monte Carlo Integration Method

In this experiment we test the convergence properties of the new Monte Carlo multivariate Gaus-
sian integration approach. The goal here is to test the efficacy of this new method irrespective
of its use in Gaussian process classifiers. The application of this method to the Gaussian process
classifier hinges mainly on its success as a stand-alone integration approach. Once we establish
this fact, we will have assurances that it would work well in the Gaussian process classifier
setting.

To be able to judge the new method’s approximation error, we have to use examples where
the “ground truth”, i.e. the real integral value, is known. We identified a special form where
this can be obtained. The experiments will be performed on this special form, described below.

The covariance matrix equals 1 on the diagonal and equals didj off the diagonal (at the
(i, j)th position), where d = (d1, . . . , dN )T is some vector with |di| < 1. In such a situation, the
orthant probability can be reduced to a simple one-dimensional integration, as follows:

∫ ∞

0
N (v, µ,Σ)dv =

1√
2π

∫ ∞

−∞
e−

u2

2

N∏
i=1

σ

(
diu√
1− d2i

)
du (63)

where σ is the cumulative Gaussian function (i.e. the one-dimensional integration of the Gaussian
density function). This formula was proposed by Das (1956), Dunnet & Sobel (1955), and Ihm
(1959). It has been also generalized to different forms by Marsaglia (1963) and Webster (1970),
and also used in combination of Monte Carlo sampling by Breslaw (1994). Some special cases
of this formula even yield some closed-form solutions.

In this experiment we considered different dimensions for our space. Specifically, we con-
sidered the dimensions N = 50, N = 200, and N = 500. In addition, for each dimension we
considered 50 different problems, where each problem has a different d vector (whose compo-
nents are generated from a uniform distribution in [−1, 1]). To evaluate how the approximation
error varies with the number of Monte Carlo samples M , we ran each of these problems for var-
ious values of M . Because the value of the integral is usually an infinitessimal value, a sensible
approach is to consider the logarithm of the estimated integral, and compare it to the logarithm
of the true integral. For example a typical integral value for a 500-dimensional problem could be
10−200. The logarithm becomes about -461. As an error measure, we used the following mean
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Table 1: The Mean Absolute Percentage Error (MAPE, in %) of the Log Multivariate Gaussian
Integral Estimate (and its Standard Error in Brackets) against the Dimension of the Problem and
the Number of Monte Carlo Samples (the Numbers are in Percent so they are Multiplied by 100)

No. MC samples Problem 1 (N = 50) Problem 2 (N = 200) Problem 3 (N = 500)

3,000,000 0.012 ( 0.0011 ) 0.015 ( 0.0065 ) 0.043 ( 0.0299 )
1,000,000 0.016 ( 0.0020 ) 0.019 ( 0.0068 ) 0.045 ( 0.0298 )
300,000 0.041 ( 0.0050 ) 0.032 ( 0.0072 ) 0.050 ( 0.0297 )
100,000 0.072 ( 0.0094 ) 0.039 ( 0.0070 ) 0.059 ( 0.0303 )
30,000 0.141 ( 0.0160 ) 0.078 ( 0.0065 ) 0.080 ( 0.0289 )
10,000 0.245 ( 0.0268 ) 0.101 ( 0.0093 ) 0.107 ( 0.0322 )

absolute percentage error, defined as:

MAPE =
100

NR

NR∑
i=1

|log(I)− log(Î)|
|log(I)|

(64)

where I is the true integral value, Î is the integral value estimated by the algorithm, and
NR represents the number of runs (i.e. the number of different d vectors tested, in our case
NR = 50).

Note that we have to be careful when evaluating the true integral numerically using Eq.
(63). If we multiply the terms first and then integrate numerically, we end up with very small
numbers, leading to a large error. We overcame this difficulty, by successive normalization by
the maximum value after each multiplication. Then we evaluate the integral and multiply back
the normalization terms that we divided by.

Table 1 shows the MAPE error measure (average over each of the 50 tested problems) for
each of the tested values of N (dimension) and M (number of Monte Carlo runs). Note that
these are percent errors, so they are multiplied by 100. Displayed in the table is also the standard
error (over the 50 tested problems). One can observe that the developed algorithm evaluates the
orthant probabilities with good accuracy. As expected the accuracy tends to improve for larger
M . However, the relation between the accuracy and the dimension is less straightforward to
describe. Even though by Eqs. (43) and (44) one might expect that for largeN there will be more
terms and hence a higher error, in practice the Pi’s are more important influencing factors. One
can also see that the algorithm succeeded for even the case of 500 dimensional problems, even
though such high dimensions are quite formidable problems. Most of the algorithms for orthant
probability estimation test on problems with only tens of dimension. e Note that because of
memory limitations, in case of a large number M of Monte Carlo samples it may not be practical
to propagate all samples together. A more practical approach is to rerun the problem several
times, each with a smaller M . For example assume that we would like to use 2,000,000 samples.
In that case we apply ten runs, each with M = 200, 000. We then average the integral estimates
obtained.

6.2 Experiment 2: Testing the New Monte Carlo Method on Gaussian Pro-
cess Classification Problems

The next group of experiments aims to verify that the proposed Monte Carlo method, in a
Gaussian process classification setting, does converge to the true solution. The problem we face
is that in general there is no way to know the true solution, and so it could be hard to verify
this claim. However, we identified a special group of problems where the “ground truth” could
be obtained. This is if we take the distance kernel function to be of the dot product form. This
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means that the covariance matrix equals

Σ = XXT (65)

This is the so-called linear kernel. It is a legitimate kernel function as it represents a similarity
between the patterns, and is positive semidefinite. For single-feature classification problems it
can be shown after a few of lines of derivation that the class 1 posterior probability of a pattern,
as given by Eq. (28), becomes

J∗ =

∫∞
−∞ e−

u2

2 σ
(
xu
)∏N

i=1 σ
(
yixiu

)
du∫∞

−∞ e−
u2

2
∏N

i=1 σ
(
yixiu

)
du

(66)

where xi and x are the feature values of respectively the ith training pattern and the test
pattern, and yi denotes the class membership for pattern i. The marginal likelihood is simply
the denominator in Eq. (66). In this group of problems the covariance function becomes of the
form discussed in the Experiment 1, where we can make use of the one-dimensional integration
method of Eq, (63) to evaluate the integrals. The fact that we are dealing with a one-dimensional
feature space does not necessarily make the problem any easier. We are still dealing with the
same formulas and with the same very high-dimensional integrals. The dimension of the feature
vector impacts only the covariance matrix, it will just have different entries.

We generated a number of training and testing patterns from a one-dimensional (i.e. single-
feature) two-class Gaussian problem. To ensure that the proposed model can handle dif-
ferent types of problems, we considered a variety of training/testing set sizes, a variety of
means/variances for the class-conditional densities (in order to account for a variety of different
class overlaps). Specifically, we considered the four problems shown below. Let N and NTEST
be the sizes of respectively the training set and test set, and let µi and σi be respectively the
mean and standard deviation of the class conditional density for class i.

• Problem 1: N = 100, NTEST = 50, µ1 = 0, µ2 = 1, σ1 = 0.2, σ2 = 0.3.

• Problem 2: N = 200, NTEST = 100, µ1 = 0, µ2 = 1, σ1 = 2, σ2 = 1.

• Problem 3: N = 400, NTEST = 200, µ1 = 0, µ2 = 1.5, σ1 = 0.5, σ2 = 0.75.

• Problem 4: N = 800, NTEST = 400, µ1 = 0, µ2 = 1, σ1 = 1, σ2 = 0.75.

When constructing the covariance matrix, we made a point to shuffle the training patterns
of both classes. This is important for achieving better accuracies/speeds. The reason will be
mentioned at the end of this subsection. To obtain statistically more reliable numbers, from
each of the above problems we applied the proposed algorithm a number NR ≡ 20 different
times. Since the estimated class 1 posterior probabilities of the different test patterns are in a
well-known range from 0 to 1, it is sufficient to use an absolute error metric, so we used the
mean absolute error (MAE), defined as follows:

MAE =
1

NTEST

NTEST∑
j=1

|J∗j − Ĵ∗j | (67)

where J∗j is an evaluation of the class 1 posterior probability for test pattern j using an exact
numerical integration procedure (the true value), obtained by the formula of Eq. (66), and Ĵ∗j
is the estimate using the proposed Monte Carlo procedure. Table 2 shows the obtained MAE
values, averaged over the 20 runs, for a variety of numbers of Monte Carlo samples.

Concerning the log marginal likelihood, we evaluated it using the proposed Monte Carlo
algorithm, and compared it with the true value, obtained numerically by evaluating the denom-
inator of Eq. (66). Since the log marginal likelihood can take any level, a normalized error
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measure is more appropriate. So we used the mean absolute percent error (MAPE) measure.
The formula is similar to Eq. (64), but with the appropriate comparison variables replaced.
Table 3 shows the obtained MAPE (%) values for a variety of numbers of Monte Carlo samples
for the log marginal likelihood estimation problem.

As seen from both tables, the algorithm is able to achieve a low error for both, the probability
evaluation and the marginal likelihood. One can also see that increasing the number of Monte
Carlo samples M leads to better accuracy. As mentioned in the last experiment, the relation
between accuracy and dimension is less straightforward to describe. It is influenced more by the
specific covariance matrix and the resulting conditional probabilities Pi. By observing Eqs. (43)
and (44), one finds that a small Pi can lead to large error. It is therefore advantageous to have
the Pi’s closer to the middle (in most cases it is around 0.5). To achieve that, it is important to
shuffle the data of both classes, rather than list first the data for Class 1, followed by the data
of Class 2. The latter will cause more extreme Pi’s and therefore lead to less accuracy. Other
than random shuffle, one could interleave the data of class 1 and class 2 in a repetitive way (e.g.
class 1 pattern, then class 2, then class 1, then class 2, etc).

6.3 Experiment 3: Comparison between the New Monte Carlo Method and
the MCMC Approach

In this and the next experiment we present a comparison of the proposed Monte Carlo algorithm
with the Markov Chain Monte Carlo (MCMC) approach, its only peer. The MCMC is the only
available method that can accurately compute the exact classification probabilities. All other
methods give only approximations. There are several MCMC based models. In this experiment
we compare between the proposed algorithm and the Hybrid Monte Carlo (HMC) Neal (1999),
and the Elliptical Slice Sampler (ESS) by Murray et al. (2010). For both methods, we use the
implementation written by Rasmussen & Nickisch (2010), which includes several enhancements
of these two methods. For the proposed algorithm we used the variant with the soft count,
described in Subsection 5.7.

We considered Problem 3 (N = 400) of Experiment 2 (with a linear kernel). As mentioned,
these are the only type of problems where the ground truth is known. For the purpose of
comparison the two main aspects of speed and accuracy are important. They are contradictory
metrics, for example improving the accuracy (by having a larger Monte Carlo sample) will
lead to more lengthy runs, and vice versa too. To be able to visualize simultaneously both of
these aspects of the performance we have plotted both the CPU time against the logarithm of
the MAE in Figure 1 (for the case of probability estimation) and against the logarithm of the
MAPE in Figure 2 (for the case of marginal likelihood estimation). In each of the two figures
every point corresponds to the average CPU time/average MAE (or MAPE) over ten runs for
a particular Monte Carlo parameter. The Monte Carlo parameter for the proposed algorithm,
and for the HMC and ESS algorithms is the number of Monte Carlo samples. For the HMC
and ESS algorithms we kept the other parameters at their recommended values, as given in the
implementation by Rasmussen & Nickisch (2010) (they are any way much less influential than
the number of samples). The parameters are fixed as follows: the number of of skipped samples
is 40, the number of burn-in samples is 10, and the number of runs to remove finite temperature
bias is 3.

To be able to judge the advantage of one algorithm versus another, one should examine the
difference in accuracy for the same run time, or similarly the difference in run time for the same
accuracy. One can see from the graphs that the proposed algorithm generally beats the HMC
algorithm. The margin of outperformance is considerable, especially for the marginal likelihood
case. The ESS ties with the the proposed algorithm for pattern probability estimation for low to
moderate accuracy targets, but ESS outperforms for high accuracy computationally expensive
runs. On the other hand, the proposed algorithm outperforms ESS considerably for the marginal
likelihood case.
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Table 2: The Mean Absolute Error (MAE) (averaged over the 20 runs) of the Gaussian Process
Classification of Experiment 2 for the Four Different Problems against the Number of Monte Carlo

Samples (the Standard Error is in Brackets).

No MC Prob 1 Prob 2 Prob 3 Prob 4
Samples (N = 100) (N = 200) (N = 400) (N = 800)

3,000,000 0.00016 ( 0.00004 ) 0.00024 ( 0.00005 ) 0.00022 ( 0.00005 ) 0.00022 ( 0.00006 )
1,000,000 0.00031 ( 0.00007 ) 0.00043 ( 0.00010 ) 0.00038 ( 0.00009 ) 0.00045 ( 0.00012 )
300,000 0.00056 ( 0.00013 ) 0.00081 ( 0.00018 ) 0.00062 ( 0.00014 ) 0.00075 ( 0.00019 )
100,000 0.00095 ( 0.00021 ) 0.00139 ( 0.00031 ) 0.00112 ( 0.00025 ) 0.00128 ( 0.00033 )
30,000 0.00160 ( 0.00036 ) 0.00297 ( 0.00066 ) 0.00212 ( 0.00047 ) 0.00235 ( 0.00061 )
10,000 0.00308 ( 0.00069 ) 0.00463 ( 0.00103 ) 0.00391 ( 0.00088 ) 0.00443 ( 0.00114 )

Table 3: The Mean Absolute Percent Error MAPE (in %, i.e. the Numbers are Multiplied by 100)
of the Log Marginal Likelihood of Experiment 2 for the Four Different Problems against the Number
of Monte Carlo Samples. All are Averages over the 20 Runs, and the Standard Error is in Brackets.

No MC Prob 1 Prob 2 Prob 3 Prob 4
Samples (N = 100) (N = 200) (N = 400) (N = 800)

3,000,000 0.0081 ( 0.0018 ) 0.0088 ( 0.0020 ) 0.0063 ( 0.0014 ) 0.0033 ( 0.0009 )
1,000,000 0.0187 ( 0.0042 ) 0.0097 ( 0.0022 ) 0.0095 ( 0.0021 ) 0.0059 ( 0.0015 )
300,000 0.0364 ( 0.0081 ) 0.0255 ( 0.0057 ) 0.0130 ( 0.0029 ) 0.0077 ( 0.0020 )
100,000 0.0671 ( 0.0150 ) 0.0340 ( 0.0076 ) 0.0238 ( 0.0053 ) 0.0130 ( 0.0034 )
30,000 0.1170 ( 0.0262 ) 0.0629 ( 0.0141 ) 0.0450 ( 0.0101 ) 0.0249 ( 0.0064 )
10,000 0.1522 ( 0.0340 ) 0.1334 ( 0.0298 ) 0.0900 ( 0.0201 ) 0.0622 ( 0.0161 )

As pointed out before, the marginal likelihood is by far the most important of the two
aspects. The reason is that it is evaluated numerous times in the process of tuning the hyperpa-
rameters of the kernel function, while the pattern probability estimation is performed only once.
For example, from the figure the proposed algorithm produces a log(MAPE) of the marginal
likelihood of about -4.52 with a CPU time of 525 sec. The ESS algorithm produces about the
same log(MAPE) (or just a little better at -4.70) with CPU time of 5350 sec. With about a
hundred application of an optimization algorithm (such as Rasmussen and Nickisch’s GPML
toolbox’s minimize function Rasmussen & Nickisch (2010)), the new algorithm takes about 15
hours, while ESS takes about 148 hours.

6.4 Experiment 4: Comparison with the Other MCMC Methods on Syn-
thetic and Real World Problems

The previous experiment, while providing an accurate benchmark comparison, considers only
the linear kernel, which may not be very prevalent in real world applications. In this experiment
we consider the more common RBF kernel, and also some synthetic and real world problems, in
order to have a test as close as possible to realistic situations. We also add to the comparison
the model developed by Titsias et al. (2009), in addition to the ESS and HMC algorithms
considered last experiment. Titsias et al’s algorithm is another MCMC-based algorithm for the
GPC problem. It relies on using dynamically optimized control variables that provide a low
dimensional representation of the function. The code is publicly available at Titsias (2010). It
applies only to RBF and ARD kernels Titsias (2010), and that is why we did not include it in
the comparison of the last experiment.

For the purpose of this comparison, there is however the problem of lack of ground truth,
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because for RBF kernels we do not know the true value of the integrals that would yield the
Gaussian process class probabilities. Nevertheless, we run the competing models on a number
of problems, and check their convergence properties. If they converge to the same class prob-
abilities, then this is a strong indication that these algorithms do indeed converge. Also, note
that the considered RBF kernel is a more efficient and more widely used kernel than the linear
kernel. So the experiments presented here are more relevant, as they fit more closely to the real
experimental situations.

Figure 1: Log of the Mean Absolute Error (MAE) of the Probability Estimates of the New Al-
gorithm, the HMC Algorithm, and the ESS Algorithm against the CPU Time (Seconds) of the

Runs

Figure 2: Log of the Mean Absolute Percentage Error (MAPE) of the Log Marginal Likelihood
Estimates of the New Algorithm, the HMC Algorithm, and the ESS Algorithm against the CPU

Time (Seconds) of the Runs

We considered artificially generated data using Gaussian class-conditional densities, and real
data sets. For the artificial problems, using the Bayes classifier’s formula, one can compute the
true posterior probability P (yi = 1|x) ≡ P true

i which the Gaussian process classifier attempts
to model. However, we must emphasize that these true posterior probabilities need not be the
same as those obtained by GPC, as GPC is based on a different formulation. If either proposed
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or competing algorithms do a good job converging to the true value of the sought integral, but
it turns out to be far from the true posterior, then it is not the fault of the algorithm. It
should be attributed to the degree of validity of the Gaussian process formulation or to the
finite sampled-ness of the training data. Nevertheless, a comparison with the true posterior
provides a useful sanity check. We computed the mean absolute error between each competing
method’s estimated probabilities and P true

i (let us denote them by MAE-POST(NEW), MAE-
POST(TITSIAS), MAE-POST(ESS), and MAE-POST(HMC)). This measure applies only for
synthetic problems, as for real problems we do not know the true posteriors. We also computed
the following measure. For each pattern, we obtain the median of all four algorithms’ esti-
mated probability Pmed

i . This so-called “consensus” value is compared against each algorithm’s

estimated probabilities. We get Meani

(
|Pi − Pmed

i |
)
for each method (denote these by MAE-

MED(NEW), MAE-MED(TITSIAS), MAE-MED(ESS), and MAE-MED(HMC)). This measure
will expose the aberrant algorithm that fails to converge, and is therefore a useful sanity check.
We have computed a similar measure for the log marginal likelihood.

The problems considered are described as follows. Let d be the dimension of the feature
vector, and let ed denote the d-dimensional vector of all ones. Also, let:

Σ0 =

(
1 0, 25

0, 25 1

)
(68)

and Σ10 is a 10× 10 one-banded matrix with 0.5 on the diagonal and 0.2 on the upper and the
lower bands. We considered the following synthetic problems, that provide a variety of different
levels of training set sizes, class overlaps, and space dimensions, and also the following real world
problems.

• Problem 1: NTRAIN = 50, NTEST = 50, d = 2, p(x|C1) = N (x, 0, I), p(x|C2) =
N (x, e2,Σ0).

• Problem 2: NTRAIN = 200, NTEST = 200, d = 2, p(x|C1) = N (x, 0, I), p(x|C2) =
N (x, e2,Σ0).

• Problem 3: NTRAIN = 50, NTEST = 50, d = 2, p(x|C1) = N (x, 0, I), p(x|C2) =
N (x, 0.5e2,Σ0).

• Problem 4: NTRAIN = 50, NTEST = 50, d = 2, p(x|C1) = N (x, 0, I), p(x|C2) =
N (x, 2e2,Σ0).

• Problem 5: NTRAIN = 50, NTEST = 50, d = 10, p(x|C1) = N (x, 0, I), p(x|C2) =
N (x, e10,Σ10).

• Problem 6: NTRAIN = 1000, NTEST = 1000, d = 2, p(x|C1) = N (x, 0, I), p(x|C2) =
N (x, e2,Σ0).

• Problem 7: Crabs data, NTRAIN = 100, NTEST = 100, d = 6, available at http://www.stats.ox.ac.uk/pub/PRNN/.

• Problem 8: Breast Cancer data, NTRAIN = 200, NTEST = 249, d = 9, available at
http://mlearn.ics.uci.edu/databases/breast-cancer-wisconsin/.

• Problem 9: USPS 3 vs 5 data, NTRAIN = 750, NTEST = 790, d = 256, available at
http://www.gaussianprocess.org/gpml/data/.

In the synthetic problems (1 to 6) we assume that the a priori probabilities are equal.
We ran six different runs on each of these problems, These six runs consider an RBF covari-

ance function Σ, with the following parameters:

1. α = 5, β = 1
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Table 4: The Mean Absolute Error between the Algorithms’ Probability Estimates and the Bayesian
Posterior Probability (MAE-POST) and the Median of the Algorithms’ Probabilities (MAE-MED)
over All Hyperparameter Sets. Note that for the Real-World Problems 7, 8, and 9 MAE-POST is

not Available

Problem MAE-POST MAE-MED

NEW TITSIAS ESS HMC NEW TITSIAS ESS HMC
Problem 1 0.1177 0.1176 0.1177 0.1153 1.4× 10−3 1.7× 10−3 2.6× 10−3 8.1× 10−3

Problem 2 0.0668 0.0676 0.06711 0.0673 3.2× 10−3 2.6× 10−3 3.1× 10−3 8.8× 10−3

Problem 3 0.0822 0.0830 0.0824 0.0837 2.3× 10−3 4.7× 10−3 3.1× 10−3 1.7× 10−2

Problem 4 0.1637 0.1641 0.1632 0.1685 1.6× 10−3 1.9× 10−3 3.3× 10−3 1.8× 10−2

Problem 5 0.2884 0.2883 0.2890 0.2872 1.5× 10−3 2.0× 10−3 3.0× 10−3 1.2× 10−2

Problem 6 0.0382 0.0384 0.0359 0.0367 7.2× 10−3 1.1× 10−2 4.1× 10−3 8.6× 10−3

Problem 7 – – – – 1.8× 10−3 2.1× 10−3 2.9× 10−3 1.3× 10−2

Problem 8 – – – – 1.6× 10−3 1.9× 10−3 2.3× 10−3 9.7× 10−3

Problem 9 – – – – 2.8× 10−3 – 4.1× 10−3 2.2× 10−2

2. α = 5, β = 5

3. α = 3, β = 2

4. α = 0.5, β = 0.5

5. α = 3, β = 1

6. α = 0.5, β = 3

For TITSIAS we considered 50,000 iterations, where we considered 5000 iterations for the burn-
in, and a starting number of three control variables. For each problem we first ran the TITSIAS
on the first α and β parameter set. We selected the number of Monte Carlo samples of the
proposed method, the ESS method, and the HMC method so that it runs in about the same
time as the TITSIAS (measured by CPU time). Then, we fixed this number for the other α and
β parameter combination runs. Table 4 shows the average MAE-POST and MAE-MED for all
nine problem (averaged over the six hyperparameter combintations).

From the runs we note the following observations:

• The runs of all methods lead to close probability estimates for all the test patterns and all
the runs (typically an absolute error between the probability estimates and the median of
probability estimates is of the order 10−3). The exception is with HMC, which is a further
from the other algorithms’ estimates.

• All methods lead to very similar mean absolute error with respect to the Bayesian posterior
error. This error is also fairly low, especially if the size of the training set is large. This is
an indication that the source of the discrepancy is probably the finite-sampled-ness of the
training set, rather than an inadequacy of the GPC model.

• The TITSIAS method was considerably slower for hyperparameter sets 4) and 6), and a
little slower for hyperparameter sets 3) and 5). Even though we had fixed the number
of iterations for all hyperparameter sets (at 50,000), it took about ten times as much to
complete the run for sets 4) and 6) (compared to parameter sets 1) and 2) and compared
to the other methods). It seems that lower values of α lead to much slower runs for the
TITSIAS method. In contrast, the proposed Monte Carlo method yields similar speeds for
all parameter sets. Also, the TITSIAS method did not converge for Problem 9 (the USPS
problem). Even when reducing the number of samples to 10,000, it did not converge in
more than 24 hours of a run.
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• For most methods the runs take about a few minutes for a small problem (like NTRAIN =
NTEST = 50), and about ten minutes for a medium problem (likeNTRAIN = NTEST =
200). Of course, this is with the exception of the hyperparameter combinations that lead to
slow runs for the TITSIAS method. For example for Problem 3 (NTRAIN = NTEST =
200) the proposed method with M = 1, 000, 000 took 12 minutes using Matlab on a com-
puter featuring an Intel duo core I3 processor. Again, it is hard to perform an accurate
speed comparison between the algorithms, because we do not know the ground truth.

• The marginal likelihood of the proposed Monte Carlo algorithm and the ESS algorithm are
very close. However, the HMC algorithm produces a marginal likelihood that is somewhat
different (often about 5 % different, and for Problem 9 about 100 % different from that of
the other two algorithms). This indicates that it fell short of fully converging.

6.5 Comments on the Results

Working with general Bayesian methods often leads to high dimensional integrals. Evaluating
such integrals can sometimes be frustrating because of the high dimensionality, and many Monte
Carlo approaches fail (see Magdon-Ismail & Atiya (2002)). The advantage of the proposed
appraoch is that it is very reliable. It basically works all the time, as we have not encountered
a failing run. It is a fairly short algorithm, and is simple to code, so this will cut down on
development time. The fact that it has no tuning parameter (other than the number of Monte
Carlo samples) also facilitates applying the method and cuts down on time consuming tuning
runs. The proposed algorithm has a main advantage compared to the other MCMC-based
algorithms. It is considerably faster for the problem of evaluating the marginal likelihood. This
is important because of its repeated evaluation during the hyperparameter tuning step, and this
makes it a very time-consuming process. For this step it is sensible to use a smaller number
M of Monte Carlo samples (for example 20,000 to 50,000). Exact evaluation of the marginal
likelihood will not much impact the optimization outcome. It is evidenced by Table 2 and Table
3 that small size Monte Carlo samples achieve very low error for the log marginal likelihood
(significantly lower than the error in the class posterior probabilities). Also, running small
samples could possibly yield three or four best hyperparameter sets, for which on a closer look
we rerun the method using a larger M to differentiate between them (a classic exploration versus
exploitation problem). Once the optimal parameters are obtained, in the classification step we
can then use a larger M (for example 200,000 or 500,000), because then, accuracy is important.

An interesting observation is that the impact of the dimension of the integral N on the
accuracy of the proposed method is not that large. It seems that other factors weigh in more,
such as the structure of the covariance matrix, and the resulting conditional probabilities. It is
imperative to shuffle the class 1 and class 2 patterns, or interleave them in a regular way, before
constructing the covariance matrix. This will lead to well-behaved conditional probabilities, and
therefore better accuracy.

7 Conclusions

In this paper we derived a new formulation that simplifies the multi-integral formula for the
Gaussian process classification (GPC) problem. The formulation, given in terms of the ratio
of two multivariate Gaussian integrals, gives new insights, and potentially opens the door for
better approximations.

We also developed a Monte Carlo method for the evaluation of multivariate Gaussian in-
tegrals. This allows us to obtain very close to exact evaluation of the GPC probabilities and
the marginal likelihood function. The proposed method is simple, reliable, and fast. As such,
it should be considered as a promising candidate for researchers to test, when attempting to
obtain exact GPC probabilities.
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Appendix

The matrix A22 can be written as

A22 = B +
bbT

σ2
∗

(69)

where

B =

(
1 0
0 I +Σ−1

)
(70)

b =

(
1
−a

)
(71)

Using the small rank adjustment matrix inversion lemma Horn & Johnson (1985), we get

A−1
22 = B−1 − B−1bbTB−1

q
(72)

where
q = σ2

∗ + bTB−1b (73)

Substituting (72) into Eq. (24), we get

A =

(
0 0
0 I − C ′(I +Σ−1)−1C ′

)
+

b′b′T

q
(74)

where

b′ = A12B
−1b =

(
−1

+C ′(I +Σ−1)−1a

)
(75)

=

(
−1

+C ′(I +Σ)−1ΣXx∗

)
(76)

(The last equality follows from substituting for the variable a from Eq. (10) (i.e. a = Σ−1ΣXx∗),
and teleporting the resulting Σ−1 into the bracketed expression (I + Σ−1)−1.) The variable q
can be simplified as follows:

q = σ2
∗ + bT

(
1 0
0 (I +Σ−1)−1

)
b (77)

= σ2
∗ + 1 + aT (I +Σ−1)−1a (78)

= 1 + Σx∗x∗ − ΣT
Xx∗(I +Σ)−1ΣXx∗ (79)

The last equation follows from the definition of a (Eq. 10), and the definition of σ2
∗ Eq. (11),

and several steps of simplification.
The first matrix in the RHS of Eq. (74) can be simplified further, by noting that

I − C ′(I +Σ−1)−1C ′ = C ′
[
I − (I +Σ−1)−1

]
C ′ (80)

= C ′(I +Σ−1)−1
[
(I +Σ−1)− I

]
C ′ (81)

= C ′(I +Σ)−1C ′ (82)

where we used the fact that C ′2 = I because it is a diagonal matrix of 1’s and -1’s. We get the
final formula for A, as follows:

A =

 1
q −ΣT

Xx∗ (I+Σ)−1C′

q

−C′(I+Σ)−1ΣXx∗
q C ′(I +Σ)−1 +

C′(I+Σ)−1ΣXx∗Σ
T
Xx∗ (I+Σ)−1C′

q

 (83)
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Let us construct the following matrix, which we will subsequently try to invert.

R =

(
1 + Σx∗x∗ ΣT

x∗x∗C
′

C ′Σx∗x∗ C ′(I +Σ)C ′

)
(84)

Using the partitioned matrix inverse theory Horn & Johnson (1985), we get

A =

 1
q −ΣT

Xx∗ (I+Σ)−1C′

q

−C′(I+Σ)−1ΣXx∗
q C ′(I +Σ)−1 +

C′(I+Σ)−1ΣXx∗Σ
T
Xx∗ (I+Σ)−1C′

q

 (85)

which is the same as A in Eq. (83), and that completes the proof.
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Pérez-Cruz, F., Vaerenbergh, S., Murillo-Fuentes, J.J., Lázaro-Gredilla, M., Santa Maria, I.
(2013). Gaussian processes for nonlinear signal processing, IEEE Signal Processing Magazine,
30, 40-50.

Qi, Y., Abdel-Gawad, A.H., Minka, T.P. (2010). Sparse-posterior Gaussian processes for general
likelihoods. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence,
450-457.

Rasmussen, C., Williams, C. (2005). Gaussian Processes for Machine Learning, MIT Press.

Rasmussen, C.E., Nickisch, H. (2010). Gaussian Processes for Machine Learning (GPML) Tool-
box. Journal of Machine Learning Research, 11, 3011-3015.

Ribando, J. (2006). Measuring solid angles beyond dimension three. Discrete & Computational
Geometry, 36, 479-487.

Rifkin, R., Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learn-
ing Research, 5, 101-141.

287



ADVANCED MATH. MODELS & APPLICATIONS, V.5, N.3, 2020

Schervish, M. (1984). Multivariate normal probabilities with error bound. Applied Statistics, 33,
81-87.

Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., Toussaint, M. (2015).
Safe exploration for active learning with Gaussian processes. In: Bifet A. et al. (eds) Ma-
chine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, Lecture Notes
in Computer Science, 9286. Springer.

Seeger, M. (2004). Gaussian processes for machine learning. International Journal of Neural
Systems, 14(2), 69-106.

Seeger M., Jordan, M. (2004). Sparse Gaussian process classification with multiple classes. Tech-
nical Report, Department of Statistics TR 661, University of California, Berkeley, CA.

Sundararajan, S., Keerthi, S.S. (2001). Predictive approaches for choosing hyperparameters in
Gaussian processes. Neural computation, 13 (5), 1103-1118.

Titsias, M. (2009, April). Variational learning of inducing variables in sparse Gaussian processes.
In Artificial Intelligence and Statistics (pp. 567-574).

Titsias, M.K., Honkela, A., Lawrence, N.D., Rattray, M. (2012). Efficient sampling for Gaussian
process inference using control variables, Advances Advances in Neural Processing Systems
12, MIT Press, 2009.

Titsias, M.K., Lawrence, N.D. (2010). Bayesian Gaussian process latent variable model. In Pro-
ceedings of the 13th International Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2010, Chia Laguna Resort, Sardinia, Italy.

Titsias, M.K. (2010). Gaussian process using control variables code:
http://www.well.ox.ac.uk/ mtitsias/software.html.

Urtasun R., Darrell, T. (2007). Discriminative Gaussian process latent variable model for classi-
fication. Proceedings of the 24th International Conference on Machine Learning (ICML’2007).

Van Vaerenbergh, S., Lázaro-Gredilla, M., Santamaŕıa, I. (2012). Kernel recursive least-squares
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